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Abstract-The natural convection in a shallow porous rectangular cavity with differentially heated 
sidewalls is examined using the Brinkman model. The heat transfer rate through the cavity is determined 
in terms of a Nusselt number, in the limit of vanishingly small aspect ratio. Two types of boundary 
conditions are considered. Case I deals with a cavity with all rigid boundaries so that the no-slip boundary 
conditions can be imposed. In case II, the cavity has a free upper surface. The present analysis shows that 
the Brinkman model and Darcy’s law give virtually the same result for the heat transfer rate when the 
Darcy number, based on the depth of the cavity, is less than the order of lo+. We also find that the 
presence of a free surface can significantly increase the heat transfer rate through the cavity, especially 

when the ~rmeability of the medium is high. 

1. tNTRODUCTlON 

NATURAL convection in porous media is known 
to be important in a wide variety of engineering 
applications such as geothermal reservoirs, thermal 
insulation by fibrous materials, packed-bed catalytic 
reactors, underground spreading of chemical wastes 
and other pollutants, and the cooling of rotating 
superconducting machinery [l-4]. The many possible 
configurations in which the flow and heat transfer 
processes in such systems have been examined include 
a rectangular _ enclosure with differentially heated 
vertical sidewalls, an annular cavity with radial heat- 
ing and an infinitely long horizontal porous layer 
heated from below. In most of these studies, Darcy’s 
law which is empirically given by 

;v= -(Vp+pgk) (1) 

is used as the momentum equation for the fluid. 
Darcy’s law is found to give satisfactory results for 
flow velocities and heat transfer rate when the porous 
medium is closely packed, i.e. it has a low permeability. 
If, on the other hand, the porous medium consists of 
a sparse distribution of particles, as is often the case, 
e.g. in petroleum reservoirs, Darcy’s law becomes 
inadequate since the presence of large void spaces 
within the medium gives rise to viscous shear in 
addition to the usual Darcy resistance. Due to the 
fact that high-porosity materials are becoming increas- 
ingly important in modern technological applica- 
tions, it is essential to develop a clear understanding 
of the flow and heat transfer processes in such media. 

From a mathematical viewpoint, Darcy’s law leads 
to a differential equation which is of order one less 
than the Navier-Stokes equations. Therefore it cannot 
be used to satisfy all the boundary conditions in a 

given problem. Specifically, the conditions of 
impenetration and no-slip at a solid boundary and 
conditions between a porous medium and a clear 
fluid cannot be completely satisfied. Nevertheless, 
because of its inherent simplicity, many forms of 
modified boundary conditions, though somewhat 
artificial, have been improvized and used in conjunc- 
tion with Darcy’s law yielding physically meaningful 
results [S, 63. An alternate and more appropriate 
approach was proposed by Brinkman [7] who 
extended the Darcy model by adding a viscous-like 
term in equation (1) thereby making it a second-order 
equation. This extended-Darcy equation which can 
be written in the form 

liv= 
K 

-(VP + pgk) + /WV (2) 

has become known as the Brinkman equation. A 
rigorous theoretical justification of equation (2) has 
been given by Tam [8] and Lundgren [9], among 
others. The Brinkman equation removes the defici- 
encies of Darcy’s law in the sense that it is applicable 
to media with high permeability and can account for 
al1 the boundary conditions at a solid surface or a 
fluid interface. Although the effective viscosity $ 
appearing in equation (2) was recently shown [lo] to 
be less than p, the pore fluid value, it has been a 
common practice to take these two viscosities to be 
equal [ll, 123. The purpose of the present paper is 
to examine the effect of a solid boundary and a 
free surface on the rate of heat transfer through a 
rectangular porous cavity using the Brinkman model. 

The first theoretical investigation of natural convec- 
tion in a porous enclosure by the use of the Brinkman 
model was made by Chan et al. [13] who studied the 
flow and heat transfer rate in a rectangular box with 
solid (im~rmeable) walls. The box is differentially 
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NOMENCLATURE 

A aspect ratio of cavity, d/l x horizontal distance variable 
A*, l3*, constants in the core streamfunction y vertical distance variable. 

C*,D*, (15a) 

C, specific heat of liquid Greek symbols 
Da Darcy number, K/d’ LX effective thermal diffusivity of the 
d depth of cavity porous medium 
Gr Grashof number p coefficient of thermal expansion of the 

g acceleration due to gravity liquid 
K permeability of the porous medium q horizontal distance variable in the 
k unit vector pointed vertically upward boundary layer region adjacent to the 

k, horizontal temperature gradient in the cold sidewall 

core region, expression (15b) 1, thermal conductivity of the liquid 

k, constant in expression (15b) for the I, thermal conductivity of the solid matrix 
core temperature i effective thermal conductivity, 

1 width of cavity &+(I--4)& 
M integral given by equation (45) p viscosity of the liquid 
Nu Nusselt number p’ effective viscosity 
Pr Prandtl number v kinematic viscosity of the liquid 

P pressure 5 horizontal distance variable in the 
Ra Rayleigh number boundary layer region adjacent to the 
T temperature hot sidewall 
U horizontal velocity component p density of the liquid 

n* characteristic velocity Q dimensionless Darcy parameter, Da - lo 

v vertical velocity component 4 porosity 
V velocity vector 1/1 streamfunction. 

heated in the horizontal direction. Chan et al. [13] 
considered enclosures with aspect ratios (depth/width) 
greater than or equal to one. Their numerical compu- 

tations indicate that when the Darcy number based 
on the width of the enclosure is less than 10e3, Darcy’s 
law and the Brinkman equation give virtually the 
same result for the heat transfer rate. Within the past 
few years there has been a renewed interest in the use 
of the Brinkman equation for analyzing flows through 
porous media. Rudraiah et al. [14] used this model to 
investigate convective instabilities of a fluid-saturated 
porous layer heated from below. In a different context, 
the Brinkman equation is used by Nandakumar and 
Masliyah [15] to determine the flow of a Newtonian 
fluid past a permeable sphere and by Haber and 
Mauri [16] in their study of flow around a porous 
sphere with a solid core. More recently, Tong and 
Subramanian [17] examined the boundary layer 
regime for natural convection in a Brinkman medium 
inside enclosures with an aspect ratio of O(1). To the 
author’s knowledge, no analysis has yet appeared 
dealing with the problem of natural convection in a 
shallow porous cavity using the Brinkman model. 
The main purpose of this paper is to present such an 
analysis. 

Several investigators [ 183 analyzed this shallow 
cavity problem using Darcy’s law. Among them, 
Hickox and Gartling [19] applied the Galerkin form 
of the finite element method and numerically com- 

puted the heat transfer rate through the cavity in 
terms of a Nusselt number. Approximate analytical 
expressions for the Nusselt number have been derived 
by Walker and Homsy [20] and Bejan and Tien [21]. 
A comparison of the heat transfer results obtained 
from the present study and from those using Darcy’s 
law will be made in Section 7. 

In the original form, neither Darcy’s law, equation 
(l), nor the Brinkman equation, equation (2), incorpor- 
ates inertial effects. Muskat [22] accounted for fluid 
inertia by introducing a velocity-squared term in the 
equation. Among others, Whitaker [23] and Slattery 
[24] and more recently Vafai and Tien [25] developed 
equations for fluid motion through a porous medium, 
including inertial effects. For the present purpose, we 
shall use the term v-V v in equation (2) to represent 
the inertia forces, as did Rudraiah et al. [14]. We 
shall see, however, that under the assumptions the 
present analysis is carried out, the effects of inertia 
can actually be ignored. 

Our analysis proceeds as follows. First, we examine 
buoyancy-driven convection in a shallow porous 
cavity with all rigid boundaries (case I). Our mathe- 
matical treatment parallels that of Cormack et al. [26] 
(who considered natural convection in a shallow 
cavity filled with a Newtonian liquid) and is based 
on the asymptotic limit that the aspect ratio of the 
cavity goes to zero (A -+ 0). This is followed by an 
analysis of natural convection in a shallow porous 
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FIG. 1. Schematic diagram of the rectangular porous cavity with all rigid boundaries (case I). 
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cavity with a free upper surface (case II). The primary 
objective is to determine the heat transfer rate through 
the cavity in terms of a Nusselt number, correct to 
0( A3). 

2. MATHEMATICAL FORMULATION 

Consider a rectangular cavity of width 1 and depth 
d, as shown in Fig. 1. It is filled with a homogeneous, 
isotropic porous medium which consists of a sparse 
distribution of solid particles surrounded by a New- 
tonian liquid. The vertical sidewalls at x = 0, I are 
maintained at temperatures TH and T,, respectively, 
with TH > T,; the upper and lower surfaces are therm- 
ally insulated. In this section we consider case I only. 
For this case both the vertical and the horizontal 
boundaries of the cavity are assumed to be rigid so 
that the conditions of impenetration and no-slip can 
be imposed on these boundaries. 

Under the Boussinesq approximation, the steady 
motion of the liquid inside the cavity can be described 
by the equations 

II, + uy = 0 (3a) 

P(UU, + uuy) + ; u = - px + /&cc + uy,) (W 

p(uv, + VII,) + ‘v 
K 

= - PY + /4,x + vy,) + pgB(T- Tc) (3c) 

PC,,(UT, + UT,) = 1(T,, + T,,) (3d) 

and the boundary conditions 

x = 0: u=v=o, T= TH; (44 

_X=I: u=v=o, T= T,; W) 

These equations and the boundary conditions are 
nondimensionalized by introducing the following 
primed variables 

x = lx’, Y = dy’, u = u*u’, v = Au&, 

P = (w,VK)P’, T= Tc + (TH - T,)T’. (5) 

Here the characteristic velocity is chosen to be 

u* = AKgj?(T, - T,)/v. (6) 

Rewriting equations (3) in terms of the primed vari- 
ables by the use of equations (5) and subsequently 
dropping the primes, we arrive at the following system 
of dimensionless equations 

u, + VY = 0 

Gr A’(uu, + DU,,) + u 

= -p, + Da(A2u,, + uY,) 

Gr A4(w, + VU,) + A2v 

(7a) 

(7W 

= -pY + DaA2(AZo,, + uY,) + T (7~) 

Ra A’(uT, + VT,) = A’T,, + Tyy (74 

The dimensionless parameters, namely the Grashof 
number, the Rayleigh number and the Darcy number 
have the definitions 

Gr = K2gb(TH - T,)/(dv’) (W 

Ra = Kg/?d(T, - Tc)/(va) (W 

Da = Kfd’. (84 

The quantity a appearing in equation (8b) is the 
effective thermal diffusivity; a = I/&,. Note that our 
definition of Darcy number is based on the depth of 
the cavity. There is a simple relationship among these 
three parameters. We have 

Ra = Da-’ Gr Pr (9) 

y = 0, -d: u=v=o, T, = 0. (4c) where Pr = v/a is the Prandtl number. 
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The dimensionless forms of boundary conditions (4) tion, away from the sidewalls. This core solution may 
are be expressed as 

x=0: u=v=o, T= 1; (lOa) *#$v + **e-“Y Wa) 
x = 1: u=v=o, T=O; (lob) 

+ ;y2 + C*y f D* 
> 

y=o,-1: u=v=o, Ty = 0. (1Oc) T= -k,x + k2 - ,J*k; Ra Fee” - $e-n 

It is convenient to introduce a streamfunction $ such 
that 

+ $3 + $2 + L)*y 
> 

(15b) 
n = Jly, v= -+X (11) 

and eliminate the pressure from the momentum 
equations (7b) and (7~) by cross differentiation. The 
result is 

Gr A2C(~,1(/,,, - +X+yyy) 

+ A’(Ic/,ti,,, - $x$xxyIl + &xx + $yy 

= W$yyyy + 2&xxyy + A4vQxxxrl - T,. WI 

We may therefore deal with equations (12) and (7d) 
directly. Boundary conditions (10) can be replaced by 
the following conditions 

x = 0: $ =Gx = 0, T= I; (W 

x= 1: $=$‘,=O, T= 0; WW 

y=o,-1: * = II/, = 0, Ty = 0. (13~) 

As mentioned in the introduction, we consider that 
the cavity has a small aspect ratio (A cc 1). In other 
words, we examine the problem given by equations 
(7d), (12) and (13), in the asymptotic limit A -+ 0. In 
this limit, the flow field can be divided into two 
distinct regions: an outer (core) region away from the 
sidewalls where the flow is essentially horizontal, and 
an inner (~undary layer) region near each sidewall 
where the flow turns around and recirculates. The 
complete flow structure is obtained by determining 
the flows in the inner and outer regions separately 
and then joining them by means of an asymptotic 
matching procedure. The heat transfer rate through 
the cavity can be expressed in terms of a Nusselt 
number defined by 

(14) 

which represents the dimensionless heat flux across 
the cold sidewall. Our aim is to compute the Nusselt 
number for both cases I and II, correct to 0(A3). The 
present analysis is based on the assumption that the 
dimensionless parameters Da, Gr and Ra are all of 

O(l). 

with 

and 

A* = - 1/[2e(l - e-‘)I (15c) 

B* = - 1/[2a(e* - 1)] (lsd) 

c* = l/2 (15e) 

D* = (e’ + 1)/[2u(eb - i)] (1X) 

e = Da-“2. (1%) 

The integration constants kl and k2 which may, in 
general, depend on A, Gr, Ra and IS can be determined 
by matching the core flow solutions, equations (15), 
with the turning flows near the sidewalls. Note how- 
ever that kl and k2 can be related by invoking the 
so-called centro-symmetry condition, i.e. by using the 
fact that the streamlines and the isotherms must be 
symmetric about the center of the cavity. In particular, 
we may write 

T(1/2, - l/2) = l/2. 

Then equation (1 Sb) gives 

k, = $1 + k,) 

(16) 

+ A2k= Ra 
A* B* L)* 1 

1 
-e-5’2 _ _e4 _ _ + _ 

2 24 
. 

d 
(17) (r 

Constant k, is now expanded in the form 

k,=C,+C,A+C2A2+C3A3+... (18) 

where the new constants Ci (i = 0,1,2,3,. . .) may 
depend on Ra, Gr and G. We shall see that in order 
to derive the Nusselt number up to 0(A3), we need 
to evaluate the constants Co, C,, C2 and C3 only. For 
the determination of these constants, we now proceed 
to examine the turning flow regions near the sidewalls. 

4. BOUNDARY LAYER FLOWS NEAR THE 

SIOEWALLS 

3. THE CORE FLOW 

In view of symmetry, it is sufficient to consider 
the boundary layer near one of the sidewalls. For 
definiteness, we analyze the turning flow in the region 

It can be easily shown that in the limit A -+ 0, the 
adjacent to the hot sidewall at x = 0 by introducing 

problem consisting of equations (7d) and (12) and 
a stretched coordinate 5 such that 

boundary conditions (13) admits a parallel flow solu- x = A<. (19) 
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(The y-coordinate is left unstretched.) In these coordi- 
nates, equations (I 2) and (7d) become 

V4JI - aZV2$ = A-‘a’q + Gr Ao2[II/,(Jls,, + qQnc) 

- II/twYYY + Il/cev)l 

V2T= Ra A($,T4 - *STY) 

where V2 and V4 denote the Laplacian and 
manic operators, respectively, with 

vL$-fb. 

Boundary conditions (13a) and (13~) lead to 

t=o: $ = *5 = 0, T= 1; 

y=o,-1: ti=*y=o, T, = 0. 

(204 

WV 

bihar- 

(21) 

(22a) 

(22b) 

These boundary conditions must be augmented by a 
set of matching conditions which are derived from 
the requirement that, for continuity in the flow 
structure, the flows in the core and the boundary 
layers must be smoothly connected. It follows that 

and 

(23a) 

$_~TB=li_mOT? (23b) 

Superscripts B and C refer to the boundary layer and 
the core region, respectively. We now write the inner 
expansions 

ti = &&.Y) + A+,(& Y) + AzJ;2Kyf 

+ A3J;3fh Y) + . . . 

T= %<>Y) + A%i(t,y) + A2%E,y) 

(244 

+ A3?3Ky) + ,*. VW 

Substitution of these expansions in equations (20), 
(22) and (23) would yield a sequence of boundary 
value problems for $i and ;f (i = 0, 1,2,3,. . .). Let us 
first consider the problem for To. We have 

with 

v2?0 = 0 (25a) 

~(O,Y) = I, ‘Ib#,O) = ‘fg&C - 1) = 0 
(25b-d) 

&tt 7b = 21 + C,). (25e) 

Condition (25e) is obtained by matching the inner 
and outer solutions (24b) and (15b), for temperature, 
to leading order. Clearly problem (25) has the unique 
solution To = 1, and as a result, we must have 

Co= 1. (26) 

The problem for 7; is given by 

v27;1 = 0 (27a) 

7;(O,Y) = 0, R:l,(r,O) = 7;,(5, - I) = 0 
(27b-d) 

$5 7; = ;c, - 5. (27e) 

Condition (27e) follows from matching two terms of 
the inner and outer expansions for temperature. The 
only solution for p, is 7, = -5 so that 

c, =o. (28) 

With To and 7; known, the problem for $, can be 
formulated as 

V4tJo - 02V2$, = -a2 

G&(0, Y) = 5,&O, Y) = 0 

3& 0) = &,(C 0) = 0 

(29a) 

(29b,c) 

(29d,e) 

J;& - I) = 5& - 1) = 0. (29f,g) 

The matching conditions for $,, are obtained by 
matching the inner and outer solutions for $, to 
leading order. These are 

&II Jto = A* eby + B*eeuY + iy2 + C*y + D* (30a) 

Jiil qos = 0. (30b) 

The problem consisting of equations (29) and (30) is 
solved numerically for a few selected values of the 
Darcy parameter, a. The computed streamlines are 
plotted in Figs. 2-4 for a = lo,20 and 70, respectively. 
The figures show that the streamlines become almost 
parailel for r2 2. This is to be expected since the 
horizontal length scale characterizing the flow near 
the sidewalls is comparable to the aspect ratio of the 
cavity. It is clear from these figures that as CF increases, 
i.e. Da decreases, the streamlines move closer to 
the solid boundaries, displaying the emergence of a 
boundary layer structure. Observe, for instance, how 
the streamline given by $ = -7.4 x 10e2 moves 
closer and closer to the solid boundaries as the value 
of a increases from 10 to 70. The leading order core 
velocity profile is drawn in Fig. 5 which also depicts 
the boundary layer behavior when a becomes large. 
Note that Darcy’s law permits a shp velocity at the 
upper (and lower) surface of the cavity and therefore 
the maximum horizontal velocity in the core occurs 
at this boundary. With the present (Brinkman) model, 
on the other hand, a no-slip boundary condition can 
be imposed at the upper (and lower) surface. As a 
result, the maximum horizontal velocity is reached at 
an interior point along the vertical, as seen in Fig. 5. 
Furthermore, the figure shows that the location of 
this maximum moves toward the upper (and lower) 
boundary as cr increases, i.e. Da decreases, finally 
approaching the surface in the limit Da --+ 0. 
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FIG. 2. Leading order streamlines in the boundary Iayer region near the hot sidewall for u = 10 (case I): 
4 = -2.2 x IO-‘, B = -3.8 x lO-2, C = -5.5 x IO-‘, D = -6.5 x lo-‘, E = -7.4 x IO-‘. 
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FIG. 3. Leading order streamlines in the boundary layer region near the hot sidewall for cr = 20 (case I). 
(Same legend as in Fig. 2.) 
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FIG. 4. Leading order streamlines in the boundary layer region near the hot sidewall for (r = 70 (case I). 
(Same legend as in Fig. 2.) 
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FIG. 5. Core velocity profiles for selected values of rr for a cavity with ail rigid boundaries (case I). 
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Next we examine the problem for the temperature 
perturbation TZ. Introducing a scaled temperature 
variable Ti = PJRa, we have 

VV-; = -lJ,, (31a) 

%(O,Y) = 0, %,W) = %YCr;, - 1) = 0 P1W 

ji)t TT; = ; c; + [f( - l/2) -f(y)] (31d) 

where 

f(y) = ZeUY _ !T)eY + iy3 

+Fy2+D*y (314 

and C, = C,/Ra. The solution for Ti is to be found 
numerically. However, it is possible to determine C; 
without actually solving for TA. This can be done as 
follows. Defining 

C, = Ra’(C; + C;“) + Ra Gr Cg Pb) 

we find that 7’; satisfies the equation 

v2K = 50,%, - GO<%, (39a) 

and the conditions 

?+;(O,y) = 0, &(&O) = ;t;;,(& - 1) = 0 (39b-d) 

(394 

On the other hand, !&’ and 7;;” solve the equations 

0 

45) = J %(L y) dy (32) 
-1 

and noting that 

i 

0 

C.0 - l/2) - f(y)1 dy = 0 (33) 
-1 

we find 

d2w/dc2 = 0, w(0) = 0, tii w(c) = f C;. (34) 

Clearly the only solution is w = 0 and therefore 
C; = 0. A numerical solution for !& is also obtained. 
This numerical solution will be needed in the compu- 
tation of ?1, and hence the constant CJ. 

We are now in a position to formulate the problem 
for 4,. Writing 

6, = Ra$; + Gr$; (35) 

we obtain the equations 

v2;11; = -lJ;;, v’7’;” = -&, 

respectively. The boundary and matching conditions 
for 7; or ?;;” are the same as conditions (39b)-(39e) 
with 7; replaced by 7;j or 7;’ and C; 
by Ci or C’;‘. Since both F1 and & must vanish 
at the top and bottom surfaces (y = 0, -1) of the 
cavity, we can show following a procedure similar to 
the evaluation of C; that C;’ = C;” = 0. Determin- 
ation of C; however requires a numerical computation 
of F;. We solve the problem consisting of equations 
(39a)-(39d) and the condition 

&ilQ = 0 (40) 

instead of condition (39e) and from the numerical 
solution thus obtained, C; is evaluated using the 
relation 

C; = 2[firnJ+(C,y)dy] (41) 

v’& - 02v2& = a2T;, (36a) 

v4K - a2V2K = ~2c~oy(!Jo<vu + $O<<C) 

- $os($oyyy + $ossy)l WV 

which are to be solved subject to the homogeneous 
boundary conditions (29b)-(29g) with go replaced by 
$; and $;‘, respectively, and the following matching 
conditions 

which follows from an integration of condition (39e) 
along the vertical. Note that C; depends on Q. 
Numerically computed values of C; for several choices 
of 0 are shown in Table 1. The table also contains 
values of C; for case II when the cavity has a free 
upper surface (see Section 6). 

The constant k, representing the horizontal temper- 
ature gradient in the core region can now be expressed 
as 

(37a) 

(37b) 

k,=1+A3Ra2C;+.... (42) 

5. THE NUSSELT NUMBER 

Again, the solution for 3; and 6;’ can be obtained The net heat transfer rate through the cavity was 
via numerical computation, However, as we shall see defined earlier in terms of a Nusselt number, according 
later, these solutions are not needed in calculating the to equation (14). However, for the present configur- 
Nusselt number up to O(A3), the order to which the ation, the Nusselt number can be derived in a different 
present analysis is carried out. For this reason, a way. Since the upper and lower surfaces of the cavity 

numerical solution for $; or $;’ will not be obtained 
here. 

Finally, in order to determine Cs, we consider the 
problem for ;I;. Setting 

Fs = Ra’(‘f;; + Ti’) + Ra Gr Tg (384 

and 
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are insulated, the heat flux through any vertical 
section of the cavity must be a constant, equal to the 
heat transfer rate across the cold sidewall. In view of 
this, the Nusselt number can be found from the core 
solution, using the formula 

Nu= - (T, - RQ $yVdy. (43) 

Substituting the core solutions (15) for the streamfunc- 
tion and the temperature in formula (43), it can be 
shown that 

Nu = k,(l + A2 Ra2 k:M) (44) 

where the quantity M, depending on (T, has the value 

2 

M= A*e~y+B*e~cY+~y2+C*y+D* dy. > 
(45) 

Inserting expression (42) for k, in equation (44), we 
can write 

Nu = 1 + A2 Ra’(M + &A) + O(A4). (46) 

This last equation determines the Nusselt number, 
correct to 0(A3). It should be emphasized that formula 
(43) holds for a cavity with all rigid boundaries as 
well as for a cavity with a free upper surface provided 
that its horizontal surfaces are thermally insulated. 

Evaluation of the intergal in equation (45) gives 

M = g(1 - ee2”) + g(ezu - 1) 

-+*2+D*2+$,+2[A*B*+${-$ 

+ !qqea+~-$+!$~ 1 (47) 

For a cavity with all rigid boundaries (case I), this 
result can be further simplified to 

M = $f(l + 2ue-” - e-20) 

+D 
D” 2 1 

*2____+_* 

6 a4 120 (48) 

In deriving equation (48) from equation (47), we 
have used the fact that C* = l/2 and the relation 
B* = A* emu (see equations (1%) and (15d)). 

The Nusselt number for case I can now be computed 
as follows. Consider a cavity for which the parameters 
A, (I and Ra are given. First we calculate M using 
equation (48) with the values of A* and D* from 
equations (1 SC) and (151). Next we determine C; from 
Table 1 or by the use of equation (41). Finally we 
substitute the values of M, C;, A and Ra in formula 
(46), yielding the Nusselt number. 

6. CAVITY WITH A FREE UPPER SURFACE 

In this section we examine case II, i.e. the situation 
when the upper surface of the cavity is free but 
thermally insulated. For this case, the dimensionless 
equations (7d) and (12) and boundary conditions (13) 
would still apply with the exception that the no-slip 
condition (Jl,, = 0) on the upper surface y = 0 (see 
condition (13~)) should be replaced by the condition 
+,,,, = 0, i.e. we now have 

y = 0: G = II/,, = 0, Ty = 0. (49) 

Condition (49) reflects the fact that the upper surface 
of the cavity is free of shear stress. We shall assume 
that this free surface remains horizontal everywhere. 

As in case I, the flow structure in the cavity consists 
of a parallel core joined by turning flows near the 
sidewalls. The core solutions may still be given by 
equations (15) but with 

A* = [(c? - 2) + 2(1 - a)e”]/(2aD) 

B* = -[(a’ - 2) + 2(1 + a)e-“]/(2aD) 

C* = (a2 cash u - 2a sinh (r + 2cosh 0 - 2)/D 

D* = l/o2 

where 

(504 

(50’4 

(5Oc) 

(5Od) 

D = 2e(a cash d - sinh c). (5Oe) 

The core velocity profiles for selected values of CT are 
shown in Fig. 7. 

An expression for the Nusselt number for the 
present case can be derived in the form of equation (44) 
where the constant k, represents the core temperature 
gradient, as before. Recall that for the cavity with all 
rigid boundaries (case I), constants k, and k, (see 

equation (17)) are related by the centro-symmetry 
condition (16). In other words, it was possible to 
suppress k2 in favor of kl. As a result, it was sufficient 
to analyze the boundary layer flow near one of the 
sidewalls, e.g. the hot sidewall only. Due to lack of 
symmetry in the’ present problem, k, cannot be 
eliminated in an obvious way. Therefore, it witl, in 
generaf, be necessary to examine the boundary layers 
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FIG. 6. Leading order streamlines in the boundary layer region near the hot sidewall for u = 10 (case II). 
(Same legend as in Fig. 2.) 

-0.60 -0.40 -0.20 -0.00 0.20 0.40 0.60 
0.00 t 

-0.40 

Y 

-0.60 1 
-0.80 

-1.00 - 

I I 

FIG. 7. Core velocity profiles for selected values of (r for a cavity with a free upper surface (case II). 

near both sidewalls, in order to determine kl. It is 
convenient to expand k, in the form 

k, = c,, + CIA + c2A2 + C3A3 + . . . (51) 

analogous to equation (18). We shall see that although 
there is no apparent symmetry in this problem, the 
boundary layer equations near the hot and cold 
sidewalls exhibit certain symmetries, leading to con- 
siderable simplification. The details of the boundary 
layer solutions are given in the Appendix. The aim of 
these calculations is to determine the constants C,, 
C,, CZ and C, appearing in expression (18) for k,. 
We find that 

C,=l,C1=C,=OandC,=RaZC; (52a-c) 

where the values of CA are obtained from a numerical 
solution of T; (see Appendix) near the hot sidewall. 
These are listed fn Table 1 for selected values of u. 
The core temperature gradient k, is still given by 
expression (42). Accordingly the Nusselt number up 
to 0(A3) can be computed from equation (46). Note 
however that M now has the value given in equation 
(47) with A*, B*, C* and D* defined by equations 
(50). 

7. RESULTS AND DISCUSSION 

As mentioned earlier, the main objective of this 
work is to determine the rate of heat transfer through 
the cavity for cases I and II and to estimate the effect 
of a free upper surface on the heat transfer rate. 

It is evident from Figs. 5 and 7 that for the same 
value of u, the magnitude of the core velocity in case 
II is higher than that in case I. This is due to the fact 
that the condition of zero shear at the free surface 
allows larger horizontal velocities within the cavity. 
The increased core velocity for the free surface prob- 
lem leads to a smaller horizontal temperature gradi- 
ent in the core, resulting in an enhancement of the 
longitudinal convective transport of heat. Accord- 
ingly, we shall find that for a given value of u and 
Ra, the Nusselt number for case II is larger than that 
for case I. 

For the purpose of presenting the heat transfer 
results, we consider a cavity of aspect ratio 0.1 with 
Rayleigh number in the range lo-100 and the Darcy 
parameter Q between 4 and 70. This range of u 
corresponds to Darcy numbers (Da) between 
6.25 x lo-’ and 2.04 x 10m4. With the values of D 
and C; shown in Table 1, the Nusselt numbers are 



864 A. K. SEN 

1.20 1 

1.oo I 
0 10 20 30 40 50 60 'IO 

a 

FIG. 8. Comparison of Brinkman (present) and Darcy models for a cavity of aspect ratio 0.1, with Ra = 50. 

Table 1. Numerically computed values of CA for 
various values of u in cases I and II 

u 

4 
5 
6 
8 

10 
20 
30 
40 
50 
60 
70 

Cavity with all Cavity with a free 
rigid boundaries upper surface 

(case I) (case II) 

-4.402 x 1O-6 -9.200 x lo-‘+ 
-2.800 x lo-’ -1.763 x 10-a 
-1.140 X 1o-4 -2.565 x 1O-3 
-1.022 x 10-S -3.895 x 1O-3 
- 1.884 x lo-’ -4.860 x 1O-3 
-4.543 x 1o-3 -7.042 x 10-a 
-5.742 x lo-’ -7.792 x 1O-3 
-6.404 x 10-a -8.164 x 1O-3 
-6.826 x 1O-3 -8.388 x 1O-3 
-7.110 x 1o-3 -8.539 x 1O-3 
-7.328 x 1O-3 -8.644 x 1O-3 

computed from equation (46) for a cavity with all 
rigid boundaries (case I) and a cavity with a free upper 
surface (case II). Using these results we have plotted 
in Fig. 8 the variation of the Nusselt number with u 
for a typical value of Ra = 50. In the same figure, the 
Nusselt number obtained from a numerical calcu- 
lation using Darcy’s law is also shown by a horizontal 
line. The Darcy results are taken from the work of 
Hickox and Gartling [ 193. It is clear from Fig. 8 that 
with Ra fixed, the Nusselt number increases as o 
increases (i.e. Da decreases) for both cases I and II. 
When Q is large, the curves for cases I and II are seen 
to approach the Darcy value as an asymptote. This 
is to be expected since in the limit u -+ co, the present 
(Brinkman) model reduces to the Darcy model. Fur- 
thermore, it is apparent that for the same Rayleigh 
number, the curve for case II lies above the curve for 
case I indicating that the heat transfer rate for a cavity 
with a free upper surface is higher than that for a 
cavity with all rigid boundaries. 

Table 2 shows the values of Nu for u = 70 and 
Ra = 25, 50 and 100 for both cases I and II. For 
comparison we have included in this table the Nusselt 
numbers obtained by Hickox and Gartling [19], 
Walker and Homsy [20] and Bejan and Tien [21] 
using Darcy’s law. The calculations reported in refs. 
[20,21] are based on an asymptotic approach in the 
limit of vanishingly small aspect ratio. It should also 
be pointed out that the results in ref. [21] are correct 
to O(P). 

Enhancement in heat transfer due to the presence 
of a free upper surface can also be. seen from Tables 
3-6 where we have presented the Nusselt numbers 
for various values of Ra with o = 10, 20, 40 and 70, 
respectively. The numerical values in these tables 
clearly indicate that for both cases I and II, the 
Nusselt number increases as u increases for the same 
value of Ra. In addition, the Nusselt number increases 
for both cases as Ra increases with u fixed. This trend 
is also clear from formula (46). With a given set of u 
and Ra, we see that the Nusselt number for a cavity 
with a free upper surface is always greater than that 
for a cavity with all rigid boundaries. The maximum 
percentage increase in the heat transfer rate in case 
II compared to case I can be estimated to be 11.5%. 
This occurs when u = 10 and Ra = 100 (see Table 3), 
for a cavity of aspect ratio 0.1. From these results we 
conclude that for the range of parameters considered, 
presence of a free surface may significantly increase 
the heat transfer rate through the cavity, especially 
when the permeability of the medium is large. We 
also find that with a fixed value of Ra, the percent 
increase in the Nusselt number decreases as u incre- 
ases. Finally, our computations reveal that the Brink- 
man model and Darcy’s law give virtually the same 
result for the Nusselt number when the Darcy number, 
based on the depth of the cavity, is less than the order 
of 10-4. 

Table 2. Comparison of Nusselt number results based on the present study (Brinkman 
model) and Darcy’s law 

Ra 

25 
50 

100 

Present study (u = 70) Hickox and Walker and Bejan and 
Case I Case II Gartling [ 193 Homsy [20] Tien [Zl] 

1.04038 1.04292 1.046 1.04587 1.04142 
1.16154 1.17167 1.182 1.18349 1.16240 
1.64617 1.68667 1.690 1.73396 1.60565 
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Table 3. Nusselt numbers for various values of Ra with u = 10 

Ra 
Cavity with all rigid Cavity with a free Percent increase 
boundaries (case I) upper surface (case II) 

Nu, Nun 
NhN; NUI x loao/, 

I 
10 1.00236 1.00378 0.142 
20 1.00945 1.01510 0.560 
30 1.02125 1.03398 1.246 
40 1.03778 1.06040 2.180 
50 1.05904 1.09438 3.337 
60 1.08502 1.13591 4.690 
70 1.11572 1.18494 6.204 
80 1.15114 1.24149 7.849 
90 1.19128 1.30556 9.593 

100 1.23615 1.37803 11.477 

Table 4. Nusselt numbers for various values of Ra with CT = 20 

Ra 
Cavity with all rigid Cavity with a free Percent increase 
boundaries (case I) upper surface (case II) Nu,, - Nu, 

Nu, Na,, Nu, 
x lOOo/, 

10 1.00436 1.00551 0.114 
20 1.01742 1.02203 0.453 
30 1.03921 1.04956 0.996 
40 1.06970 1.08811 1.721 
50 1.10890 1.13767 2.594 
60 1.15682 1.19824 3.580 
70 1.21345 1.26983 4.646 
80 1.27879 1.35243 5.758 
90 1.35285 1.44604 6.888 

100 1.43561 1.55067 8.015 

Table 5. Nusselt numbers for various values of Ra with u = 40 

Ra 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Cavity with all rigid Cavity with a free Percent increase 
boundaries (case I) upper surface (case II) Nu,, - Nu, 

Nut Nu,, Nut 
x lOOo/, 

1.00577 1.00646 0.068 
1.02308 1.02583 0.269 
1.05192 1.05812 0.589 
1.09230 1.10332 1.008 
1.14422 1.16143 1.504 
1.20768 1.23246 2.052 
1.28268 1.31641 2.629 
1.36921 1.41326 3.217 
1.46729 1.52304 3.799 
1.57690 1.64573 4.365 

Table 6. Nusselt numbers for various values of Ra with (I = 70 

Ra 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Cavity with all rigid Cavity with a free Percent increase 
boundaries (case I) upper surface (case II) Nu,, - Nu, 

Nu, Nu,, Nut 
x 100% 

1 SW46 1.00686 0.040 
1.02585 1.02746 0.157 
1.05816 1.06178 0.342 
1.10339 1.10983 0.584 
1.16154 1.17162 0.868 
1.23262 1.24713 1.177 
1.31662 1.33637 1.500 
1.41356 1.43934 1.824 
1.52340 1.55604 2.142 
1.64617 1.68667 2.460 
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APPENDIX 

Eou~ary layer ~ulysisfor the cavity with a&ee upper surface 
By setting x = A& the flow in the hot boundary layer 

region in this case can be described by equations (20) subject 
to the following boundary conditions 

r=o: $ = $4 =O, T= 1; (Al) 

y = 0: ti = *ry = 0, Tr = 0; (A2) 

y= -1: ti = *, = 0, Ty = 0. (A3) 

The matching conditions (23) may still be used with the core 
solutions identified by equations (15) where the constants 
A+, B*, C* and D* are now given by equations (50). The 
streamfunction and the tem~rature are expanded in the 
form of expansions (24), as usual. Substituting these expan- 
sions into equations (20), boundary conditions (Al)+A3) 
and matching conditions (23), we find, to a Ieading approxi- 
mation, the problems 

and 

v2q*o = 0, ‘fb(O,Y) = 1, 

‘lb&, 0) = sb,ce, - 1) = 0, !_I To = C, (A4) 

V4$, - a2V2JI, = u2yir, 

s;,(O, Y) = J;,& Y) = 0, 

S& 0) = S;,,*ce 0) = 4 

&#, - I) = j;,,(k - 1) = 0, (As) 

j$$, = A*eay -t B*eWaY + iy2 t C*y + D*, 

,IiiIfnmJI,, = 0. 

At the next three orders, we have the following problems for 
temperature 

v*7’, = 0, 7’,(O,Y) = 7’,,(r;,O) = 7;,(1;, - 1) = 0, 

ji_i 7; = F, - c,s (A6) 

Vr’I; = -Ra$,,, 7’,(0, Y) = 7’,,(5,0) = 7’,,(5, - 1) = 0 

pii 7; = <7, - C,< - RaCay) t.47) 

where 

A’ iI*_. 1 
g(y)=-e”Y--e “‘+gY3+$y2+D*y (A8) 

d 0 

(A9) 
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Our aim here is to determine the constants Co through C, 
in expansion (18) for k, and calculate the Nusselt number 
using equation (44). It can be shown, analogous to the cavity 
with all rigid boundaries, that the problems for 5, and 
the higher approximations of J/ are not needed in the 
computation of these constants. Therefore we shall not write 
down these problems explicitly. 

Near the cold sidewall, we let x = 1 - An and write 
expansions (24) with < replaced by 7 and a’caret placed over 
the functions Jli and ‘J (instead of a tilde) to distinguish 
them from the corresponding expansions in the hot boundary 
layer. It foIIows that the problems for temperature in this 
boundary layer are given by 

v2 % = 0, Qo, Y) = %&f, 0) = *r,,(,, - 1) = 0, 
&II 70 = C, - c,; (AlO) 

vzc = 0, 'i,(O,Y) = I, = C,,(g, - 1) = 0, 

lim pr = (C, - C,) + C,rf; (All) *-m 

V2T2 = -Ra&,, %;co, Y) = %;d%O) = %;,(a - 1) = 0, 

lim ?, = (r2 - C,) + C,q - Ra C&(y); 
?-+‘m (Al21 

T&Y) = ‘t;,(sO) = f&(tl. - 1) = 4 
fief ?s = (C, - C,) + C,rj - 2Ra C,C,g(Y). (A13) 

Note that the Laplacian V2 now has the definition (21) with 
5 replaced by q. 

Consider first problem (A4) for T, which has the only 
solution Te(<,Y) = 1 so that C, = 1. Similarly the only 
solution of problem (AiO) is ‘I&y) = 0 and therefore 
C, = ce = 1. By considering problems (A6) and (Al 1) suc- 
cessively, it is easy to show that ‘r’,(& y) = -& ?“(Q y) = rl 
and consequently C, = Ci = 0. Next a numerical solution 
for &,(t, y) is found by solving problem (AS). The computed 
streamlines are shown in Fig. 6 for D = 10. The figure clearly 
exhibits the lack of symmetry in the vertical direction which 
is caused by the zero-shear condition at the upper surface. 
It can be easily shown that the problem for the leading order 
streamfunction in the cold boundary layer, I$?&, y), becomes 
identical to that of G&&y) if r~ is exchanged with < and 
carets replace tildes. Therefore there is no need to examine 
the problem for 5,. 

The constant C, can be determined by analyzing problem 
(A7). If we define pz = Ra F; and Cz = Ra C;, we obtain 
conditions(3l)withcondition(3ld)replaced by thecondition 

F_i 7,; = c; - g(y). (A14) 

Then following a procedure similar to that used in Section 
4, it can be easily deduced that 

Similarly by analyzing problem (Al2), we can show that 
C, = 0. With C; known, the problem given by conditions 
(Jla)-(3le) and (A14) is solved numerically for ?‘i. The 
numerical solutions of I& and ?” wiil be used to find the 
solution for ?; and thereby determine the constant Ca. We 
now turn to the problems for ?” and p,. 

It is convenient to write ?& = Ra’(T; + pi’) + Ra Gr F, 
and c, = Ra*(C; + &‘) + Ra Gr c,, analogous to equation 
(38). We then find that ?a(<,~) solves the problem given by 
conditions (39) with condition (39e) replaced by the condition 

)& 7’&z,Y) = G (Al6) 

We shall not write down the problems for !&’ or Ti’, from 
which it can be shown that &’ = Cg’ = 0. To determine 
C;, we first solve the T; problem numerically with require- 
ment (40) instead of condition (Al6). Then c; is found by 
using the relation 

(A17) 

Finally to determine C,, we examine the problem for ‘t;(& y). 
Set it;, = Ra2@‘; + p;“) + Ra Gr p’;: and C, = Ra’(C$ 
+ Cy’) + Ra Gr C$’ in conditions (A13) to obtain 

V2G = - (II;,,%, - 9,&) (AlSa) 

‘t;(O, Y) = ‘I”& 0) = &(??, - 1) = 0 (AlSb) 

jcir /r; = c; - c;. (A18c) 

Considering probiem (A18) above with condition (AlSc) 
replaced by the condition 

,“% T& = 0 (A19) 

we find that the problems for t;(r~,y) and -T&&y) are 
identical. In view of this, we may deduce from conditions 
(A16) and (AlSc) that C; = 2C;, from which C; can be 
computed. The remaining constants in C3, namely 
C, and C,’ can be shown to be zero by examining the 
problems for pi and ?‘i’. Therefore we have C3 = Ra2C;. 
This completes the determination of the constants C,, C,, 
C, and C3 (see equations (52)). 

CONVECTION NATURELLE DANS UNE CAVITE POREUSE ETROITE-LE MODELE 
DE BRINKMAN 

R&n&-On ttudie g l’aide du modtle de Brinkman la convection naturelle dans une cavite poreuse, 
rectangulaire et ttroite avec des parois latbrales differemment chauf%s. Le transfert thennique a travers 
la cavitt est determine en fonction du nombre de Nusselt, darts la limite dun rapport de forme extremement 
petit. On considere deux types de conditions aux limites. LX cas I concerne une cavitt awe toutes les 
frontieres rigides de telle fagon que les conditions aux limites d’adh&ence soient impo&es. Dans le cas II, 
la cavi3 a une surface sup&ieure libre. L’analyse montre que le mod&h de Brinkman et la loi de Darcy 
donnent ~tuellement le meme r&sultat, pour le transfert de chaleur, quand le nombre de Darcy base sur 
ia profondeur de la cavite eat inf&rieur 1 10S4. On trouve aussi que la pr&ence d’une surface libre peut 

augmenter le transfert the~que, particu~~~ment quand la ~~~abi~it~ du milieu est forte. 
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NATURLICHE KONVEKTION IN EINEM FLACHEN PORC)SEN HOHLRAUM- 
DAS BRINKMAN-MODELL 

Zusammeofassuq-Die natiirliche Konvektion in einem flachen, poriisen, rechteckigen Hohlraum mit 
unterschiedlich beheizten Seitenwlnden wird mit Hilfe des Brinkman-Modells untersucht. Der Wlr- 
metransport durch den Hohlraum wird fur den Fall eines verschwindend kleinen Seitenverhlltnisses mit 
einer Nusselt-Zahl dargestellt. Zwei Arten von Randbedingungen werden untersucht : Im ersten Fall wird 
ein vollkommener Hohlraum mit Wanden ringsum betrachtet, bei dem die Haftbedingung an den W&den 
gilt. Im zweiten Fall hat der Hohlraum eine freie OberIliiche. Die Untersuchung zeigt, daB das Brinkman- 
Model1 und Darcy’s Gesetz praktisch dieselben Ergebnisse fir den W~etrans~rt liefem, wenn die 
Darcy-Zahl, auf die Tiefe des Hohlraums bezogen, kleiner als etwa 10e4 ist. Bei Vorhanden~in einer 
freien ObertlLche erhoht sich der W~~et~ns~rt durch den Hohlraum betrachtlich, vor allem, wenn die 

Permeabilitat des poriisen Mediums groB ist. 

ECTECTBEHHAJl KOHBEKHMI1 B TOHKOH flOPMCTOH IIOJIOCTM-MOAEJIb 
IGPMHKMAHA 

AHHoraunn-EcrecTaeHHan KOHBeKIIWl 6 TOHKO~~ nopecroii npKMOyrO.IIbHOti IIOJIOCTH c HeonwiaKoBo 

HafpeBaeMbIMB 6OKOBMMH CTeHKaMIl WZ,IeJlyeTCK C "OMOUlbIO MOJ,Wn, 6pHHKMaHa. &&TeHCRBHOCTb 

TennonepeHoca vepes nonocTb onpenenaew3 c noMoubf0 wscna Hyccenb?-a ma npenenbH0 Manor0 

OTHOuIeHIiR BbiCOTbl K unipase. PaccMarpueatorcs aaa rnna rpaHWiHblX yCJIOBHii. B nepeoM cnyqae 

u3ysaeTcr nonocTb,nMe~~aK 6ce Tsepnare rpaHwubi,TaK YTO Ha rpawiuax OTCyTCTByeT npOCKa,Tb3bF 

BaHiie Bo BTOP~M cnyqae nOnOCTb li~ee~ CBO6OAHy~ Bepxeloh3 nOBepxH~Tb.A~~n3 noKa3bwae-r,9TO 

MOLleJSb ~pnHKMaHa It 3aKOH &%pCtr ,WEOT npaKT~~~Kn O~~HaKOB~~ Pe3yJIbTaT QnS ~HTeH~~~H~T~ 

rennonepesioca B TOM cnyrae, Korna wicno Aapcn, ~Ho~aHH~ Ha rny6iaee nonocm, MeHbnie 10-4. 

~aK~~Hati~eHO,'fTOCB060iW~R nOBe~XHO~bMO~eTCylu~TBeHHOyBe~~~~Tb~HTeHCnRH~TbTennOne- 

peHOCa 'iepe3 IlOJIOCTb,OC06eHHo KOFna npOHHUaeMOCTbC)LW,b, BeJlHKa. 


