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Abstract—The natural convection in a shallow porous rectangular cavity with differentially heated
sidewalls is examined using the Brinkman model. The heat transfer rate through the cavity is determined
in terms of a Nusselt number, in the limit of vanishingly small aspect ratio. Two types of boundary
conditions are considered. Case I deals with a cavity with all rigid boundaries so that the no-slip boundary
conditions can be imposed. In case II, the cavity has a free upper surface. The present analysis shows that
the Brinkman model and Darcy’s law give virtually the same result for the heat transfer rate when the
Darcy number, based on the depth of the cavity, is less than the order of 10™* We also find that the
presence of a free surface can significantly increase the heat transfer rate through the cavity, especially
when the permeability of the medium is high.

1. INTRODUCTION given problem. Specifically,
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the conditions of

NATURAL convection in porous media is known
to be important in a wide variety of engineering
applications such as geothermal reservoirs, thermal
insulation by fibrous materials, packed-bed catalytic
reactors, underground spreading of chemical wastes
and other pollutants, and the cooling of rotating
superconducting machinery [1-4]. The many possible
configurations in which the flow and heat transfer
processes in such systems have been examined include
a rectangular enclosure with differentially heated
vertical sidewalls, an annular cavity with radial heat-
ing and an infinitely long horizontal porous layer
heated from below. In most of these studies, Darcy’s
law which is empirically given by

v=—(Vp+ pgk) (1

==

is used as the momentum equation for the fluid.
Darcy’s law is found to give satisfactory results for
flow velocities and heat transfer rate when the porous
medium is closely packed, i.e. it has a low permeability.
If, on the other hand, the porous medium consists of
a sparse distribution of particles, as is often the case,
e.g in petroleum reservoirs, Darcy’s law becomes
inadequate since the presence of large void spaces
within the medium gives rise to viscous shear in
addition to the usual Darcy resistance. Due to the
fact that high-porosity materials are becoming increas-
ingly important in modern technological applica-
tions, it is essential to develop a clear understanding
of the flow and heat transfer processes in such media.

From a mathematical viewpoint, Darcy’s law leads
to a differential equation which is of order one less
than the Navier—Stokes equations. Therefore it cannot
be used to satisfy all the boundary conditions in a
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impenetration and no-slip at a solid boundary and
conditions between a porous medium and a clear
fluid cannot be completely satisfied. Nevertheless,
because of its inherent simplicity, many forms of
modified boundary conditions, though somewhat
artificial, have been improvized and used in conjunc-
tion with Darcy’s law yielding physically meaningful
results [5, 6]. An alternate and more appropriate
approach was proposed by Brinkman [7] who
extended the Darcy model by adding a viscous-like
term in equation (1) thereby making it a second-order
equation. This extended-Darcy equation which can
be written in the form

%v = —(Vp + pgk) + u'V2v )
has become known as the Brinkman equation. A
rigorous theoretical justification of equation (2) has
been given by Tam [8] and Lundgren [9], among
others. The Brinkman equation removes the defici-
encies of Darcy’s law in the sense that it is applicable
to media with high permeability and can account for
all the boundary conditions at a solid surface or a
fluid interface. Although the effective viscosity
appearing in equation (2) was recently shown [10] to
be less than g, the pore fluid value, it has been a
common practice to take these two viscosities to be
equal [11, 12]. The purpose of the present paper is
to examine the effect of a solid boundary and a
free surface on the rate of heat transfer through a
rectangular porous cavity using the Brinkman model.

The first theoretical investigation of natural convec-
tion in a porous enclosure by the use of the Brinkman
model was made by Chan et al. [13] who studied the
flow and heat transfer rate in a rectangular box with
solid (impermeable) walls. The box is differentially
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A aspect ratio of cavity, d/!

A* B* constants in the core streamfunction

C*,D*  (15a)

C, specific heat of liquid

Da Darcy number, K/d?

d depth of cavity

Gr Grashof number

g acceleration due to gravity

K permeability of the porous medium

k unit vector pointed vertically upward

k, horizontal temperature gradient in the
core region, expression (15b)

k, constant in expression (15b) for the
core temperature

{ width of cavity

M integral given by equation (45)

Nu Nusselt number

Pr Prandtl number

p pressure

Ra Rayleigh number

T temperature

u horizontal velocity component

Uy characteristic velocity

v vertical velocity component
velocity vector

NOMENCLATURE

x horizontal distance variable
y vertical distance variable.

Greek symbols
o effective thermal diffusivity of the
porous medium
B coefficient of thermal expansion of the
liquid
n horizontal distance variable in the
boundary layer region adjacent to the
cold sidewall
/A, thermal conductivity of the liquid
/s thermal conductivity of the solid matrix
A effective thermal conductivity,
A+ (1 — ),
viscosity of the liquid
effective viscosity
kinematic viscosity of the liquid
horizontal distance variable in the
boundary layer region adjacent to the
hot sidewall
density of the liquid
dimensionless Darcy parameter, Da~
porosity
streamfunction.

TATEE - <l =3

1/2

<« a9

heated in the horizontal direction. Chan et al. [13]
considered enclosures with aspect ratios (depth/width)
greater than or equal to one. Their numerical compu-
tations indicate that when the Darcy number based
on the width of the enclosure is less than 10~ 3, Darcy’s
law and the Brinkman equation give virtually the
same result for the heat transfer rate. Within the past
few years there has been a renewed interest in the use
of the Brinkman equation for analyzing flows through
porous media. Rudraiah et al. [14] used this model to
investigate convective instabilities of a fluid-saturated
porous layer heated from below. In a different context,
the Brinkman equation is used by Nandakumar and
Masliyah [15] to determine the flow of a Newtonian
fluid past a permeable sphere and by Haber and
Mauri [16] in their study of flow around a porous
sphere with a solid core. More recently, Tong and
Subramanian [17] examined the boundary layer
regime for natural convection in a Brinkman medium
inside enclosures with an aspect ratio of O(1). To the
author’s knowledge, no analysis has yet appeared
dealing with the problem of natural convection in a
shallow porous cavity using the Brinkman model.
The main purpose of this paper is to present such an
analysis.

Several investigators [18] analyzed this shallow
cavity problem using Darcy’s law. Among them,
Hickox and Gartling [19] applied the Galerkin form
of the finite element method and numerically com-

puted the heat transfer rate through the cavity in
terms of a Nusselt number. Approximate analytical
expressions for the Nusselt number have been derived
by Walker and Homsy [20] and Bejan and Tien [21].
A comparison of the heat transfer results obtained
from the present study and from those using Darcy’s
law will be made in Section 7.

In the original form, neither Darcy’s law, equation
(1), nor the Brinkman equation, equation (2}, incorpor-
ates inertial effects. Muskat [22] accounted for fluid
inertia by introducing a velocity-squared term in the
equation. Among others, Whitaker [23] and Slattery
[24] and more recently Vafai and Tien [25] developed
equations for fluid motion through a porous medium,
including inertial effects. For the present purpose, we
shall use the term v-V v in equation (2) to represent
the inertia forces, as did Rudraiah et al. [14]. We
shall see, however, that under the assumptions the
present analysis is carried out, the effects of inertia
can actually be ignored.

Our analysis proceeds as follows. First, we examine
buoyancy-driven convection in a shallow porous
cavity with all rigid boundaries (case I). Our mathe-
matical treatment parallels that of Cormack et al. [26]
(who considered natural convection in a shallow
cavity filled with a Newtonian liquid) and is based
on the asymptotic limit that the aspect ratio of the
cavity goes to zero (4 — 0). This is followed by an
analysis of natural convection in a shallow porous
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Fi1G. 1. Schematic diagram of the rectangular porous cavity with all rigid boundaries (case I).

cavity with a free upper surface (case II). The primary
objective is to determine the heat transfer rate through
the cavity in terms of a Nusselt number, correct to
0(A3).

2. MATHEMATICAL FORMULATION

Consider a rectangular cavity of width [ and depth
d, as shown in Fig. 1. It is filled with a homogeneous,
isotropic porous medium which consists of a sparse
distribution of solid particles surrounded by a New-
tonian liquid. The vertical sidewalls at x =0, [ are
maintained at temperatures Tj; and Tg, respectively,
with T,y > Tg; the upper and lower surfaces are therm-
ally insulated. In this section we consider case I only.
For this case both the vertical and the horizontal
boundaries of the cavity are assumed to be rigid so
that the conditions of impenetration and no-slip can
be imposed on these boundaries.

Under the Boussinesq approximation, the steady
motion of the liquid inside the cavity can be described
by the equations

u,+v,=0 (3a)

Pl + vm) + 44 = —p + gy + 1y,) (3b)

pluv, + vvy) + %v

= —py+ Wog +v,) + pgB(T— T (30)
pCuT, + vT) = AT, + T;,) (3d)

and the boundary conditions
x=0 u=v=0, T=T, (4a)
x=1I u=v=_0, T=T (4b)
y=0,—-d u=v=0, T,=0. (4c)

These equations and the boundary conditions are
nondimensionalized by introducing the following
primed variables

x = Ix, u=u , v=Auy,
T= Tc + (TH - TC)T’.

y= dy,’
p = (uu J/K)p,

Here the characteristic velocity is chosen to be

()

u, = AKgB(Ty — T)/v. (6)
Rewriting equations (3) in terms of the primed vari-
ables by the use of equations (5) and subsequently
dropping the primes, we arrive at the following system
of dimensionless equations

u, +v,=0 (7a)
Gr A*(uu, + vu,) + u
= —p, + Da(A*u,, + u,)  (7b)
Gr A*uv, + vv,) + A%
= —p,+ DaA¥ A%, +v,)+ T (70
Ra AT, + vT) = A*T,, + T,  (7d)

The dimensionless parameters, namely the Grashof
number, the Rayleigh number and the Darcy number
have the definitions

Gr = K?gf(Ty — To/(dv?) (8a)
Ra = Kgpd(Ty — To)/(va) (8b)
Da = K/d>. (8¢c)

The quantity a appearing in equation (8b) is the
effective thermal diffusivity; « = 4/pC,. Note that our
definition of Darcy number is based on the depth of
the cavity. There is a simple relationship among these
three parameters. We have

Ra=Da 'GrPr )

where Pr = v/a is the Prandtl number.
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The dimensionless forms of boundary conditions (4)
are

x =0 u=yp=0, T=1; (10a)
x=1 u=1yp=0, T=0; (10b)
y=0 -1 u=1y=0, T,=0. (10c)

It is convenient to introduce a streamfunction ¢ such
that

n=¢’yt U= —dlx (11}

and eliminate the pressure from the momentum
equations (7b) and {7c) by cross differentiation. The
result is

Gr AZ[(wylllxyy - l/’xtl’yyy)
+ Az(wyw:txx - 'J/x'»[’xxy)] + Al'//xx + Wyy
= Da['[’yyyy + 2A2wxxyy + A“%:::J - T.

We may therefore deal with equations (12} and (7d}
directly. Boundary conditions (10} can be replaced by
the following conditions

(12)

x=0 Y=y, =0, T=1 (133
x=1  §y=y,=0 T=0 (13b)
y=0—-1: ¢=y¢,=0, T,=0 (130

As mentioned in the introduction, we consider that
the cavity has a small aspect ratio (4 « 1). In other
words, we examine the problem given by equations
(7d), (12) and (13), in the asymptotic limit 4 — 0. In
this limit, the flow field can be divided into two
distinct regions: an outer {core) region away from the
sidewalls where the flow is essentially horizontal, and
an inner (boundary layer) region near each sidewall
where the flow turns around and recirculates. The
complete flow structure is obtained by determining
the flows in the inner and outer regions separately
and then joining them by means of an asymptotic
matching procedure. The heat transfer rate through
the cavity can be expressed in terms of a Nusselt
number defined by

1]
Nu:—-J T,
-1

which represents the dimensionless heat flux across
the cold sidewall. Our aim is to compute the Nusselt
number for both cases I and I, correct to O(4°). The
present analysis is based on the assumption that the
dimensionless parameters Da, Gr and Ra are all of
o).

dy (14)

x = }

3. THE CORE FLOW

It can be easily shown that in the limit A — 0, the
problem consisting of equations (7d) and (12) and
boundary conditions (13) admits a parallel flow solu-

tion, away from the sidewalls. This core solution may
be expressed as

¥ =k, (A*e"” + B*e " + %yz + C*y + D*) (15a)

T= —kx + k, — A%? Ra(éie"y B
2 a
+éy3+—(’;—*y2+l)*y> {15b)
with
A* = —1/[26(1 —e™ %] (15¢)
B* = —1/[20(e" ~ 1)] (15d)
C*=1)2 (15e)
D* = (e? + 1)/[20(e” — 1)] (15)
and
6= Da 1% {15g)

The integration constants k, and k, which may, in
general, depend on A, Gr, Ra and ¢ can be determined
by matching the core flow solutions, equations {15),
with the turning flows near the sidewalls. Note how-
ever that k; and k, can be related by invoking the
so-called centro-symmetry condition, 1.¢. by using the
fact that the streamlines and the isotherms must be
symmetric about the center of the cavity. In particular,
we may write

T(1/2, — 1/2} = 1/2.
Then equation (15b) gives

(16)

1
ky = 5(1 + ky)

* * *
+ A% Ra(éﬂ—e"”2 —%e"’z -—%—+~2%). (17

Constant k, is now expanded in the form

ky=Co+ C,A+ CrA2 + C;4% + ... (18)

where the new constants C; (i=0,1,2,3,...) may
depend on Ra, Gr and 6. We shall see that in order
to derive the Nusselt number up to 0(4?), we need
to evaluate the constants C,, C,, C, and C; only. For
the determination of these constants, we now proceed
to examine the turning flow regions near the sidewalls.

4. BOUNDARY LAYER FLOWS NEAR THE
SIDEWALLS

In view of symmetry, it is sufficient to consider
the boundary layer near one of the sidewalls. For
definiteness, we analyze the turning flow in the region
adjacent to the hot sidewall at x = 0 by introducing
a stretched coordinate ¢ such that

x = AL. (19



Natural convection in a shallow porous cavity—the Brinkman model 859

(The y-coordinate is left unstretched.) In these coordi-
nates, equations {12) and {7d) become

V4|// - G'ZVzl// = A—lﬂzTE + GrAaz[ll/y(ll/gyy + |l/§§€)
—Vd¥yyy + V)] (20a)
V2T = RaAW,T; — ¥,T)) (20b)

where V2 and V* denote the Laplacian and bihar-
monic operators, respectively, with

2
V2= —é%z-z- + ;}3 2n
Boundary conditions (13a) and {13c) lead to
E=0. Y=y, =0, T=1 (22a)
y=0-1 Y=y, =0, T,=0. (22b)

These boundary conditions must be augmented by a
set of matching conditions which are derived from
the requirement that, for continuity in the flow
structure, the flows in the core and the boundary
layers must be smoothly connected. It follows that

glim Yh = ,1}_’.’}, ¥* (23a)

and

Elhrg T? = lim T€. (23b)

Superscripts B and C refer to the boundary layer and
the core region, respectively. We now write the inner
expansions

¥ =Pl y) + A‘pl(f, ¥+ Azlf’z(é,y}
+ AN + ..
T=Ti&, 0 + ATiE ) + A2The, y)

+ ATEN + ...

Substitution of these expansions in equations (20),
(22) and (23) would yield a sequence of boundary
value problems for ; and T;(i = 0,1,2,3,...). Let us
first consider the problem for T,. We have

{(24a)

(24b)

VT, =0 {25a)

with

TO(Os _V) = 1: ny(é3 0) = T(’)y(és - 1) =0
{25b—d)
Jim T, = %(1 + Co). (25¢)
Condition (25e) is obtained by matching the inner
and outer solutions (24b) and (15b), for temperature,

to leading order. Clearly problem (25) has the unique
solution T, = 1, and as a result, we must have

Co=1 (26)

The problem for 7, is given by

VT, =0 {27a)

TI(O’ y) = 0’ le(éy 0) = le(é’ - 1) = 0
(27b-d)
girg T, = %c, 3 (27e)

Condition (27¢) follows from matching two terms of
the inner and outer expansions for temperature. The

only solution for T, is T, = — ¢ so that
C, =0 (28)

With T, and T, known, the problem for §, can be
formulated as

V4o — 0?Vi, = —0? (29a)
¥o(0,5) = §oi0,y) = 0 (29b,c)
Pol&,0) = Po,(&,0) = 0 (29d.e)
Poles 1) = o (&, — 1) =0. (29%.g)

The matching conditions for §, are obtained by
matching the inner and outer solutions for ¥, to
leading order. These are

lim o = A*e” + B*e ™ + %yz + C*y + D* (30a)

[4ad-t]

lim Yo: = 0. (30b)
The problem consisting of equations (29) and (30) is
solved numerically for a few selected values of the
Darcy parameter, 6. The computed streamlines are
piotted in Figs. 2—4 for ¢ = 10, 20 and 70, respectively.
The figures show that the streamlines become almost
parallel for £>2. This is to be expected since the
horizontal length scale characterizing the flow near
the sidewalls is comparable to the aspect ratio of the
cavity. It is clear from these figures that as o increases,
te. Da decreases, the streamlines move closer to
the solid boundaries, displaying the emergence of a
boundary layer structure. Observe, for instance, how
the streamline given by i = —7.4 x 1072 moves
closer and closer to the solid boundaries as the value
of o increases from 10 to 70. The leading order core
velocity profile is drawn in Fig. 5 which also depicts
the boundary layer behavior when ¢ becomes large.
Note that Darcy’s law permits a slip velocity at the
upper (and lower) surface of the cavity and therefore
the maximum horizontal velocity in the core occurs
at this boundary. With the present {Brinkman) model,
on the other hand, a no-slip boundary condition can
be imposed at the upper (and lower) surface. As a
result, the maximum horizontal velocity is reached at
an interior point along the vertical, as seen in Fig. 5.
Furthermore, the figure shows that the location of
this maximum moves toward the upper (and lower)
boundary as ¢ increases, i.e. Da decreases, finally
approaching the surface in the limit Da - 0.



860 A. K. SEN

0.0

o m

|

>

1.0

0.0 1.0 20 3.0

Fi1G. 2. Leading order streamlines in the boundary layer region near the hot sidewall for ¢ = 10 {case I}
A= —-22x10"3,B=—38x107%C=-55x10"3D=—65x 10" E=—74x 1072
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Fi1G. 3. Leading order streamlines in the boundary layer region near the hot sidewall for o = 20 (case I).
(Same legend as in Fig. 2)
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F1G. 4. Leading order streamlines in the boundary layer region near the hot sidewall for ¢ = 70 {case I}.
(Same legend as in Fig. 2))
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FIG. 5. Core velocity profiles for selected values of ¢ for a cavity with all rigid boundaries (case I).
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Next we examine the problem for the temperature
perturbation 7,. Introducing a scaled temperature
variable T, = Ty/Ra, we have

V2T, = —¥, (31a)
T:0,) =0, Ty 0=Ty&-1)=0 (lbo)
lim o= 5C 4 [f(- 1)~ f)]  (31d)
where
fy) = é‘;e"” ooy éf
+C—*y2 + D*y  (3le)

2

and C; = C,/Ra. The solution for T, is to be found
numerically. However, it is possible to determine C,
without actually solving for 7. This can be done as
follows. Defining

w(f) = r Ty&ydy (32
-1

and noting that

0
f [f(=1/2) - f(y]dy =0 33
-1

we find
d?w/dé? =0, w(0) =0, chqrrolo w(é) = %C;. (34)

Clearly the only solution is w=0 and therefore
C, = 0. A numerical solution for T; is also obtained.
This numerical solution will be needed in the compu-
tation of T, and hence the constant C,.

We are now in a position to formulate the problem
for §,. Writing

¥, =Ra¥; + Gri; (35)
we obtain the equations
Vi, — oV, = 0Ty, (36a)
V4J";' - ‘Tzvz'p; = az[JDy(JOQ‘yy + ';oggg)
— VodlWoyy + Yoer)] (36b)

which are to be solved subject to the homogeneous
boundary conditions (29b)-(29g) with }, replaced by
¥ and {, respectively, and the following matching
conditions

Jim §; = Jim J1 =0 (37a)
Elim g = Jim Yie=0. (37b)

Again, the solution for ; and §; can be obtained
via numerical computation. However, as we shall see
later, these solutions are not needed in calculating the
Nusselt number up to O(4%), the order to which the
present analysis is carried out. For this reason, a

numerical solution for ; or ¥, will not be obtained
here.

Finally, in order to determine C;, we consider the
problem for T;. Setting

Ty =Ra¥ T3+ Ty)+ RaGr Ty (38a)
and
C, = Ra¥(C; + C) + RaGrC;  (38b)
we find that T satisfies the equation
VT, = bFO,T;{ - nﬁogT;, (39a)
and the conditions
100 =0, T3,¢.00=T,( —-1)=0 (39b-d)
lmTi(E) = 5Cs (39¢)

On the other hand, T and T, solve the equations
vy =45, VY =-¢,

respectively. The boundary and matching conditions
for Ty or T;" are the same as conditions (39b)—(39€)
with T; replaced by T;or7T, and C;
by C;or C3. Since both ; and §; must vanish
at the top and bottom surfaces (y =0, —1) of the
cavity, we can show following a procedure similar to
the evaluation of C, that C; = C; = 0. Determin-
ation of C; however requires a numerical computation
of T4. We solve the problem consisting of equations
(39a)—(39d) and the condition

:lgg T::=0 (40)
instead of condition (39¢) and from the numerical
solution thus obtained, C; is evaluated using the
relation

0]
¢ = 2[}ifgf T;(f,y)dy] (4D
-1
which follows from an integration of condition (39¢)
along the vertical. Note that C; depends on o.
Numerically computed values of C;, for several choices
of ¢ are shown in Table 1. The table also contains
values of C, for case II when the cavity has a free
upper surface (see Section 6).
The constant k, representing the horizontal temper-
ature gradient in the core region can now be expressed
as

ky=1+A*Ra*Cy +.... 42)

5. THE NUSSELT NUMBER

The net heat transfer rate through the cavity was
defined earlier in terms of a Nusselt number, according
to equation (14). However, for the present configur-
ation, the Nusselt number can be derived in a different
way. Since the upper and lower surfaces of the cavity
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are insulated, the heat flux through any vertical
section of the cavity must be a constant, equal to the
heat transfer rate across the cold sidewall. In view of
this, the Nusselt number can be found from the core
solution, using the formula

0
- f (Tx — Ray, T)dy. (43)
-1

Substituting the core solutions (15) for the streamfunc-
tion and the temperature in formula (43), it can be
shown that

Nu = k,(1 + A2 Ra*kiM) (44)

where the quantity M, depending on ¢, has the value

2
M= (A*e‘”+3*e‘°’+%y2+C*y+D“> dy.
(45)

Inserting expression (42) for k; in equation (44), we
can write

Nu =1+ A2Ra¥(M + C34) + O(4%.  (46)
This last equation determines the Nusselt number,
correct to O(A3). It should be emphasized that formula
(43) holds for a cavity with all rigid boundaries as
well as for a cavity with a free upper surface provided

that its horizontal surfaces are thermally insulated.
Evaluation of the intergal in equation (45) gives

% 2
( 2o

AX2 2y . B
M:EG—U“G }‘*'2 €

1 o L AY]2
20+2[AB +5

—~(-‘-+£s+£s)e‘°}
Gl
) B*C*{ -

ctp*_c* bt
2 8 6 |

For a cavity with all rigid boundaries (case I), this
result can be further simplified to

-1

+-;—C*2 +D** 4

A*D"‘

+M("“ ) — 47

*2
= %—-(1 + 207" —e" 29

D* 2 1
+ D*? —6‘ F + ‘1'55 (48}

A K.

SEN

In deriving equation (48) from equation (47), we
have used the fact that C* = 1/2 and the relation
B* = A*e ™7 (see equations (15¢) and (15d)).

The Nusselt number for case I can now be computed
as follows. Consider a cavity for which the parameters
A, ¢ and Ra are given. First we calculate M using
equation (48) with the values of 4* and D* from
equations (15c) and (15f). Next we determine C; from
Table 1 or by the use of equation (41). Finally we
substitute the values of M, C,, 4 and Ra in formula
(46), yielding the Nusselt number.

6. CAVITY WITH A FREE UPPER SURFACE

In this section we examine case I, i.e. the situation
when the upper surface of the cavity is free but
thermally insulated. For this case, the dimensionless
equations (7d} and (12) and boundary conditions (13}
would still apply with the exception that the no-slip
condition (§, = 0) on the upper surface y = 0 (see
condition (13c})) should be replaced by the condition
¥,, =0, i.e. we now have

Y=v,=0, T,=0.

Condition (49) reflects the fact that the upper surface
of the cavity is free of shear stress. We shall assume
that this free surface remains horizontal everywhere.

As in case I, the flow structure in the cavity consists
of a parallel core joined by turning flows near the
sidewalls. The core solutions may still be given by
equations (15} but with

y=0 49)

A* =[(c* - 2) + A1 — 6)e"1/(26D)  {50a)

B* = —[(6* — 2) + 2(1 + 0)e “}/2aD} (50b)

C* = (62 cosha — 2¢sinho 4+ 2cosho — 2)/D  (50¢)
D* = 1/a* (50d)

where
D = 20{0 cosh o — sinh o). (50e)

The core velocity profiles for selected values of ¢ are
shown in Fig. 7.

An expression for the Nusselt number for the
present case can be derived in the form of equation (44}
where the constant k, represents the core temperature
gradient, as before. Recall that for the cavity with all
rigid boundaries (case I), constants k, and k, (see
equation (17)) are related by the centro-symmetry
condition (16). In other words, it was possible to
suppress k, in favor of k,. As a result, it was sufficient
to analyze the boundary layer flow near one of the
sidewalls, e.g. the hot sidewall only. Due to lack of
symmetry in the present problem, k, cannot be
eliminated in an obvious way. Therefore, it will, in
general, be necessary to examine the boundary layers
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F1G. 6. Leading order streamlines in the boundary layer region near the hot sidewall for ¢ = 10 (case 1I).
(Same legend as in Fig. 2.)
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F1G. 7. Core velocity profiles for selected values of o for a cavity with a free upper surface (case II).

near both sidewalls, in order to determine k,. It is
convenient to expand k, in the form

k2=Co+ClA+CzA2+C3A3+... (51)

analogous to equation (18). We shall see that although
there is no apparent symmetry in this problem, the
boundary layer equations near the hot and cold
sidewalls exhibit certain symmetries, leading to con-
siderable simplification. The details of the boundary
layer solutions are given in the Appendix. The aim of
these calculations is to determine the constants C,,
C,, C, and C; appearing in expression (18) for k,.
We find that

Co=1,C,=C,=0and Cy =Ra’C; (52a—c)

where the values of C, are obtained from a numerical
solution of T; (see Appendix) near the hot sidewall.
These are listed In Table 1 for selected values of .
The core temperature gradient k,; is still given by
expression (42). Accordingly the Nusselt number up
to O(A%) can be computed from equation (46). Note
however that M now has the value given in equation
(47) with A*, B* C* and D* defined by equations
(50).

7. RESULTS AND DISCUSSION

As mentioned earlier, the main objective of this
work is to determine the rate of heat transfer through
the cavity for cases I and II and to estimate the effect
of a free upper surface on the heat transfer rate.

It is evident from Figs. 5 and 7 that for the same
value of ¢, the magnitude of the core velocity in case
II is higher than that in case . This is due to the fact
that the condition of zero shear at the free surface
allows larger horizontal velocities within the cavity.
The increased core velocity for the free surface prob-
lem leads to a smaller horizontal temperature gradi-
ent in the core, resulting in an enhancement of the
longitudinal convective transport of heat. Accord-
ingly, we shall find that for a given value of ¢ and
Ra, the Nusselt number for case II is larger than that
for case I.

For the purpose of presenting the heat transfer
results, we consider a cavity of aspect ratio 0.1 with
Rayleigh number in the range 10100 and the Darcy
parameter ¢ between 4 and 70. This range of o
corresponds to Darcy numbers (Da) between
6.25 x 10~? and 2.04 x 10~ * With the values of ¢
and C; shown in Table 1, the Nusselt numbers are
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FIG. 8. Comparison of Brinkman (present) and Darcy models for a cavity of aspect ratio 0.1, with Ra = 50.

Table 1. Numerically computed values of C; for
various values of ¢ in cases I and II

Cavity with all  Cavity with a free

o rigid boundaries upper surface
(case I) (case II)
4 —4.402 x 1076 —9.200 x 1074
5 —2.800 x 1073 —1.763 x 1073
6 ~1.140 x 107* —2.565 x 1073
8 —1.022 x 1073 —3.895 x 1073
10 —1.884 x 1073 —4.860 x 1073
20 —4.543 x 1073 —7.042 x 1073
30 —5742 x 1073 —7.792 x 1073
40 —6.404 x 1073 ~8.164 x 1073
50 —6.826 x 1073 —8.388 x 1073
60 —7.110 x 1073 —8.539 x 1073
70 —7328 x 1073 —8.644 x 1073

computed from equation (46) for a cavity with all
rigid boundaries (case I) and a cavity with a free upper
surface (case IT). Using these results we have plotted
in Fig. 8 the variation of the Nusselt number with o
for a typical value of Ra = 50. In the same figure, the
Nusselt number obtained from a numerical calcu-
lation using Darcy’s law is also shown by a horizontal
line. The Darcy results are taken from the work of
Hickox and Gartling [19]. It is clear from Fig. 8 that
with Ra fixed, the Nusselt number increases as ¢
increases (i.e. Da decreases) for both cases I and II.
When o is large, the curves for cases I and II are seen
to approach the Darcy value as an asymptote. This
is to be expected since in the limit 6 — oo, the present
(Brinkman) model reduces to the Darcy model. Fur-
thermore, it is apparent that for the same Rayleigh
number, the curve for case II lies above the curve for
case I indicating that the heat transfer rate for a cavity
with a free upper surface is higher than that for a
cavity with all rigid boundaries.

Table 2 shows the values of Nu for ¢ = 70 and
Ra =25, 50 and 100 for both cases I and II. For
comparison we have included in this table the Nusselt
numbers obtained by Hickox and Gartling [19],
Walker and Homsy [20] and Bejan and Tien [21]
using Darcy’s law. The calculations reported in refs.
[20, 21] are based on an asymptotic approach in the
limit of vanishingly small aspect ratio. It should also
be pointed out that the results in ref. [21] are correct
to 0(A49).

Enhancement in heat transfer due to the presence
of a free upper surface can also be seen from Tables
3-6 where we have presented the Nusselt numbers
for various values of Ra with o = 10, 20, 40 and 70,
respectively. The numerical values in these tables
clearly indicate that for both cases I and II, the
Nusselt number increases as o increases for the same
value of Ra. In addition, the Nusselt number increases
for both cases as Ra increases with ¢ fixed. This trend
is also clear from formula (46). With a given set of ¢
and Ra, we see that the Nusselt number for a cavity
with a free upper surface is always greater than that
for a cavity with all rigid boundaries. The maximum
percentage increase in the heat transfer rate in case
11 compared to case I can be estimated to be 11.5%.
This occurs when ¢ = 10 and Ra = 100 (see Table 3),
for a cavity of aspect ratio 0.1. From these results we
conclude that for the range of parameters considered,
presence of a free surface may significantly increase
the heat transfer rate through the cavity, especially
when the permeability of the medium is large. We
also find that with a fixed value of Ra, the percent
increase in the Nusselt number decreases as ¢ incre-
ases. Finally, our computations reveal that the Brink-
man model and Darcy’s law give virtually the same
result for the Nusselt number when the Darcy number,
based on the depth of the cavity, is less than the order
of 1074

Table 2. Comparison of Nusselt number results based on the present study (Brinkman
model) and Darcy’s law

Present study (¢ = 70) Hickox and Walker and Bejan and

Ra Case 1 Case I1 Gartling [19] Homsy [20] Tien [21]
25 1.04038 1.04292 1.046 1.04587 1.04142
50 1.16154 1.17167 1.182 1.18349 1.16240
100 1.64617 1.68667 1.690 1.73396 1.60565
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Table 3. Nusselt numbers for various values of Ra with ¢ = 10

Cavity with all rigid

Cavity with a free

Percent increase

Ra boundaries (case I}  upper surface (case I[I})  Nuy — Ny, « 1007,
Ny, Nuy Ny, ?
10 1.00236 1.00378 0.142
20 1.00945 1.01510 0.560
30 1.02125 1.03398 1.246
40 1.03778 1.06040 2.180
50 1.05904 1.09438 3.337
60 1.08502 1.13591 4.690
70 1.11572 1.18494 6.204
80 1.15114 1.24149 7.849
90 1.19128 1.30556 9.593
100 1.23615 1.37803 11.477
Table 4. Nusselt numbers for various values of Ra with ¢ = 20
Cavity with all rigid Cavity with a free Percent increase
Ra boundaries (case I)  upper surface (case II) Nu, — Ny, X 100%
Ny, Nuy Ny ’
10 1.00436 1.00551 0.114
20 1.01742 1.02203 0.453
30 1.03921 1.04956 0.996
40 1.06970 1.08811 1.721
50 1.10890 1.13767 2.594
60 1.15682 1.19824 3.580
70 1.21345 1.26983 4.646
80 1.27879 1.35243 5.758
90 1.35285 1.44604 6.888
100 1.43561 1.55067 8.015
Table 5. Nusselt numbers for various values of Ra with ¢ = 40
Cavity with all rigid Cavity with a free Percent increase
Ra boundaries (case I}  upper surface (case II)  Nuy — Ny, x 100
Ny, Nuy Ny, °
10 1.00577 1.00646 0.068
20 1.02308 1.02583 0.269
30 1.05192 1.05812 0.589
40 1.09230 1.10332 1.008
50 1.14422 1.16143 1.504
60 1.20768 1.23246 2.052
70 1.28268 1.31641 2.629
80 1.36921 1.41326 3217
90 1.46729 1.52304 3.799
100 1.57690 1.64573 4.365
Table 6. Nusselt numbers for various values of Rg with ¢ = 70
Cavity with all rigid Cavity with a free Percent increase
Ra boundaries (case I)  upper surface (case II) Nu,; — Ny, x 1007,
Ny, Nuy Ny, °
10 1.00646 1.00686 0.040
20 1.02585 1.02746 0.157
30 1.05816 1.06178 0.342
40 1.10339 1.10983 0.584
50 1.16154 1.17162 0.868
60 1.23262 1.24713 1.177
70 1.31662 1.33637 1.500
80 1.41356 1.43934 1.824
90 1.52340 1.55604 2.142
100 1.64617 1.68667 2.460
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APPENDIX

Boundary layer analysis for the cavity with a free upper surface

By setting x = A¢, the flow in the hot boundary layer
region in this case can be described by equations (20} subject
to the following boundary conditions

E=0 Y=y, =0, T=1I (A1)
y=0 y=y,=0, T,=0 (A2)
y=-1 ¥=¢,=0, T,=0 (A3)

The matching conditions (23) may still be used with the core
solutions identified by equations (15) where the constants
A*, B*, C* and D* are now given by equations (50). The
streamfunction and the temperature are expanded in the
form of expansions (24), as usual. Substituting these expan-
sions into equations (20), boundary conditions (AD-{A3)
and matching conditions (23), we find, to a leading approxi-
mation, the problems

V=0, Ty =1,
Toy(€10) = Tby(é, ~1) =0, :ILH; To = Co (A4)
and
Vo — 02V, = 62T,
‘;(}(Os y ) = ﬁog(oa y ) =0,
‘IO(&? 0) = &0)}(53 0} = 07
Folé, —1) = o6, —1) =0, (AS)

}L‘g Yo = A%e” + B*e™™ + %yz + C*y + D*,
JimPog = 0.

At the next three orders, we have the following problems for
temperature

VT =0, T, =T (&0 =T, (&, —1) =0,

ImT=C, -Gt (A6)

VT, = —Rafly,., 0,y =T (&0 =Tt -1 =0

Jim ,=C,~C¢ —RaClely) (A7)

where

A* B* 1 Cc*
= —e® . LeTO 4 3 2 *
gly) P e gy 5y + DYy (AB)

VT = Ra[&lyTI; + (&oyfu - ‘;ogsz)],
TS(Oﬂ .Y) = Téy(cs 0) = zy(éa e 1) =0,
Jim Ty = €y — €3¢ — 2Ra CoCg(y).

(A9)
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Qur aim here is to determine the constants C, through C,
in expansion (18) for k, and calculate the Nusselt number
using equation (44). It can be shown, analogous to the cavity
with all rigid boundaries, that the problems for ¥, and
the higher approximations of ¥ are not needed in the
computation of these constants. Therefore we shall not write
down these problems explicitly.

Near the cold sidewall, we let x =1 — An and write
expansions (24) with ¢ replaced by  and a‘caret placed over
the functions ¢, and T, (instead of a tilde) to distinguish
them from the corresponding expansions in the hot boundary
layer. It follows that the problems for temperature in this
boundary layer are given by

VT, =0, 140,59 = To,(n.0) = To,n. — 1) =0,

Jim To=Co~Cq (A1)

VL =0, 1,09 ="T,m0="T,0mn~1)=0,

Jim T, =(C, - C)+Com (AL)

vZ TZ = —Ra ‘2;037: Tz(os y) = TZ;(??’O) = ?2)'(’75 - l) = 0«:

Jim T,=(C, - C))+ Cin — RaCglyr  (A12)
V2T3 = ”Ra[‘plyTIq + (!ﬁOyT}q - &04?-2);)]’
TS(O’ Y= T;y('l, 0) = Téy(") - 1) =0,
"l}{g Ty =(C3 — C3) + Can — 2RaCyCigly).  (Al3)

Note that the Laplacian V2 now has the definition (21) with
¢ replaced by n.

Consider first problem (A4) for T, which has the only
solution Ty(¢,y) =1 so that Cy = 1. Similarly the only
solution of problem (A10) is Ty(,5) =0 and therefore
Co = Cy = 1. By considering problems {A6) and (A11) suc-
cessively, it is easy to show that T,i&, 1 = —¢& Tiny) =19
and consequently C, = C, = 0. Next a numerical solution
for ¥ol&, y) is found by solving problem (A5). The computed
streamlines are shown in Fig. 6 for ¢ = 10. The figure clearly
exhibits the lack of symmetry in the vertical direction which
is caused by the zero-shear condition at the upper surface.
It can be easily shown that the problem for the leading order
streamfunction in the cold boundary layer, ¥4(n, y), becomes
identical to that of §(&,y) if n is exchanged with ¢ and
carets replace tildes. Therefore there is no need to examine
the problem for .

The constant C, can be determined by analyzing problem
(A7). If we define T, = RaT, and C, = RaC,, we obtain
conditions (31) with condition (31d) replaced by the condition

Jim T, = C; — g0 (A14)

Then following a procedure similar to that used in Section
4, it can be easily deduced that

. 1 1 1
C;= flg(}’)dy = C‘(g - ;3) %

Similarly by analyzing problem (A12), we can show that
C, = 0. With C; known, the problem given by conditions
(31a)-(31c) and (A14) is solved numerically for T;. The
numerical solutions of ¥, and T, will be used to find the
solution for 7; and thereby determine the constant Cy. We
now turn to the problems for T, and T,

It is convenient to write Ty = Ra¥ (T, + 7)) + RaGr T}
and C; = Ra¥C; + C}) + RaGr C;, analogous to equation
(38). We then find that Ti(Z, y) solves the problem given by
conditions (39) with condition (39¢) replaced by the condition

(A15)

Jim T3, = C. (A16)
We shall not write down the problems for T3 or T, from
which it can be shown that C; = C;" = 0. To determine
C,, we first solve the T} problem numerically with require-
ment (40} instead of condition (A16). Then C; is found by
using the relation

C= ggngcr Ty »dy. (A17)
-1

Finally to determine C;, we examine the problem for T3(¢, y).
Set T,=Ra¥T,+ T{)+ RaGrT] and C,= Ra*C}
+ C3") + Ra Gr Cy in conditions (A13) to obtain

VZT’S - (lﬁ()yTén - .FOWT'Zy) (Alsa)
T30, y) = To,n.0) = T3, — 1) =0 (A18b)
Jlim Ty=Cy - Cs. {A18¢)

Considering problem (A18) above with condition {A18c)
replaced by the condition

glrg Ty =0 (A19)
we find that the problems for T3(7,y) and —T;(&,y) are
identical. In view of this, we may deduce from conditions
(A16) and (A18c) that C; = 2C;, from which C, can be
computed. The remaining constants in C; namely
C; and C;" can be shown to be zero by examining the
problems for T3 and T,". Therefore we have C, = Ra>C;,

This completes the determination of the constants Cg, C,,
C, and C; (see equations (52)),

CONVECTION NATURELLE DANS UNE CAVITE POREUSE ETROITE—LE MODELE
DE BRINKMAN

Résumé—On étudie a 'aide du modéle de Brinkman la convection naturelle dans une cavité poreuse,
rectangulaire et étroite avec des parois latérales differemment chauffées. Le transfert thermique a travers
la cavité est déterminé en fonction du nombre de Nusselt, dans la limite d’un rapport de forme extrémement
petit. On considére deux types de conditions aux limites. Le cas I concerne une cavité avec toutes les
frontiéres rigides de telle fagon que les conditions aux limites d’adhérence soient imposées. Dans le cas 11,
la cavité a une surface supérieure libre. L’analyse montre que le modéle de Brinkman et la loi de Darcy
donnent virtuellement le méme résultat, pour le transfert de chaleur, quand le nombre de Darcy basé sur
la profondeur de la cavité est inférieur 2 107*, On trouve aussi que la présence d’une surface libre peut
augmenter le transfert thermique, particuliérement quand la perméabilité du milieu est forte.

HMT 30:5-D
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NATURLICHE KONVEKTION IN EINEM FLACHEN POROSEN HOHLRAUM—
DAS BRINKMAN-MODELL

Zusammenfassung—Die natiirliche Konvektion in einem flachen, pordsen, rechteckigen Hohlraum mit
unterschiedlich beheizten Seitenwinden wird mit Hilfe des Brinkman-Modells untersucht. Der Wir-
metransport durch den Hohlraum wird fiir den Fall eines verschwindend kleinen Seitenverhéltnisses mit
einer Nusselt-Zahl dargestellt. Zwei Arten von Randbedingungen werden untersucht: Im ersten Fall wird
ein vollkommener Hohlraum mit Winden ringsum betrachtet, bei dem die Haftbedingung an den Winden
gilt. Im zweiten Fall hat der Hohlraum eine freie Oberfliche. Die Untersuchung zeigt, daB das Brinkman-
Modell und Darcy’s Gesetz praktisch dieselben Ergebnisse fiir den Warmetransport liefern, wenn die
Darcy-Zahl, auf die Tiefe des Hohlraums bezogen, kleiner als etwa 10~* ist. Bei Vorhandensein einer
freien Oberfliche erhéht sich der Wirmetransport durch den Hohlraum betrichtlich, vor allem, wenn die
Permeabilitdt des porbsen Mediums groB ist.

ECTECTBEHHASI KOHBEKLIUA B TOHKOW IMTOPUCTON IMOJIOCTH-~MOJEJb
BPHHKMAHA

Aunoraumn—EcTecTBeHHaA KOHBEKLUMS B TOHKOH NMOPHUCTOH HPAMOYTrOJIbHON NOJOCTH C HEOAUHAKOBO
HarpesaeMbiMH GOKOBBIMH CTEHKaMM HcCiieiyeTcsl ¢ noMolnbpio Moaend bpunkmana. HeTencusHocts
TENsIoNepeHoca Yepe3 NoAoCTh ONpeleNseTcs ¢ noMoiupio ynucna Hyccenwra ans mpeaenbHo masnoro
OTHOWICHHSA BBICOTHI K HIHpHHE. PaccMaTpHBAIOTCA ABa THAA TPaHMYHBIX ycjobuil. B nepBoMm cnyudae
H3y4aeTCA NOJIOCTh, HMEIOIIIasA BCE TBEPbIC I'PAHULBL, TAK 4TO HA IPaHHUAX OTCYTCTBYET MPOCKATb3bi-
sanue Bo BTopoMm ciy4ae nonocTe HMeeT cBOOOIHYIO BEPXHIOIO NOBEPXHOCTh. AHAJIN3 NOKA3bIBALT, 4TO
mozent Bpunkmana u 3akod Jlapcm HarOT NPAaKTHYECKH OAMHAKOBHIA PE3yNbTAT A8 MHTEHCHBHOCTH
TENJIONEPEHOCa B TOM Cilydae, Koraa uyucno Jlapc, ocHoBaHHOE Ha TAyOuHE nosnocTH, MeHpme 1074
Takxe HaitaeHo, 4T0 cBOOOAHAR NOBEPXHOCTE MOXET CYLIECTBEHHO YBEIHYHTD HHTEHCHBHOCTE TEMJIONE-
peHoca Yepes NoJIoCTh, 0COOEHHO KOTAa IPOHHIAEMOCTE CPEIB! BE/IHKA.



